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Maxwell’s Equations, General Set

Point Form Integral Form
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Significance of the Maxwell’s equations
•The two time-varying equations are mathematically sufficient to produce 
separate wave equations for the electric and magnetic field vectors.

•Also, they indicates time variable E and H fields cannot exist independently.

•The steady state equations help to identify the wave  nature as transverse.

•Two constitutive equations are needed for solving the Maxwell’s equations.
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Scopes of study
• Electromagnetic waves in a medium having finite permeability  and 
permittivity  but with conductivity  = 0,

•The wave equation for electromagnetic Waves in a dielectric,

•Impedance of a dielectric to electromagnetic Waves,

•Electromagnetic waves in a medium of properties ,  and  (where   0 ),

•Electromagnetic wave velocity in a conductor and anomalous dispersion,
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Electromagnetic waves in a medium having 
finite permeability  and permittivity  but 
with conductivity  = 0
•Given conditions 

(1) The properties (eg. amplitude, phase, frequency, wavelength and speed) of the 
chosen plane waves in xy plane are constant,

(2) These properties will not vary with respect to x and y and all derivatives /x 
and /y will be zero.

(3) In dielectric, no charge ( = 0) and no current density  (J = 0).
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Maxwell’s equations in dielectric
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The wave equation of electromagnetic 
waves in a dielectric
•Since, with these plane waves, all derivatives with respect to x and y are zero.  
Equations  (2A) and (4A) give

•This implies that Hz is constant in space and time.

• Hz has no effect on the wave motion. For simplicity, put Hz = 0.

•A similar consideration of equations (1A) and (3A) leads to  Ez = 0.

•The above results suggest that the oscillations in H an E occur in direction 
perpendicular to z-direction. In other words, the EM plane wave is transverse.

7

0   and   0z zH H

z t


 
  

 



The wave equation for electromagnetic waves 
in a dielectric : plane-polarized waves (1)
•Consider Ex only, with Ey = 0, equations (3A) and  (4A) give

•Using the fact that 

•The wave equation for Hy is found to be

•Similarly, the wave equation for Ex is 
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Recall a formal derivation of the wave 
equation from Maxwell’s equations
in dielectric (1)

•From identity

•From the constitutive equation :

•Due to equation (1) :    

•From equation (3) :

•From the constitutive equation : 

•From equation (4) and constitutive equation : 
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Recall a formal derivation of the wave 
equation from Maxwell’s equations
in dielectric (2)

•The wave equation

•Possible solution for the wave equation may be given as

•By substituting the solution in the wave equation, we obtain

•Finally, the wave equation in free space becomes  
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The wave equation for electromagnetic Waves 
in dielectric : plane-polarized waves (2)
•The vector Ex and Hy obey the same wave equation.

•In free space, the velocity is that of light given as 
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Plane electromagnetic waves

(a) The electric field E, magnetic 
field B and propagation vector k are 
everywhere mutually perpendicular

(b) Wave fronts for a linear 
polarized plane electromagnetic 
wave
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Energy density of electromagnetic 
wave in free space
•An electromagnetic wave represents the transmission of energy.

•The energy density, in J/m3 , for electric field uE and magnetic field uB in free 
space are given as

•At any specified time and place, the two field are related by  E = cB .

•This gives   uE = uB and the total energy density is  u = uE + uB = 2uE = 2uB

•Or   
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Poynting vector (1)
•Consider the power or the rate at which energy is transported by the electromagnetic 
wave.

•Energy flow of an EM wave in time t. The energy enclosed in the rectangular 
volume V flows across the surface A.

•Therefore, power transferred per unit area S is 
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Poynting vector (2)
•The power per unit area in terms of E and B is given as

•The power unit area, S, when assigned the direction of propagation, is called 
Poynting vector. This can be written as

•Time average of the power per unit area called irradiance is given as
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Problem : Poynting vector (energy 
flow in w/m2)
The plane polarized electromagnetic wave (Ex, Hy) travels in free space. 

Show that its Poynting vector is given by

Where c is the velocity of light. 

Determine the intensity in such a wave. 
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Solution
•Due to                               and the constitutive equation 

•The Poynting vector becomes 

•With appropriate solution for the plane wave; 

•This gives    

•Using equation (3) from page 6, this leads to

•Therefore,  
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Solution
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Problem : average irradiance
A laser beam of radius 1 mm carries a power of 6 kW. 

Determine its average irradiance and the amplitude of its E and B fields.
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Solution
•The average irradiance can be found from   power/area = 1.91 x 109 W/m2

•From the irradiance                         , the amplitude of E field is found to be 1.20 x 106 V/m

•Due to the relationship E = cB, the amplitude of B field becomes 4.00 x 10-3 T

20

2
0 0

1

2
I c E



Impedance of a dielectric to electromagnetic Waves

•From 

•If the medium is free space and 

•Also the dimensions   of               is ohms (check this!)

•Therefore, represents the free space characteristic impedance 

to electro magnetic wave travelling through it.
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Electromagnetic waves in a medium of 
properties ,  and  (where   0 ) (1)
•To derive the wave equation of the plane polarized wave composed Ex and Hy

components  propagating in a conductor, let’s start with equation (4) from page 6 
with a current density term

•This becomes

•Taking /t, 
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•Also consider equation (3) from page 6 :

•This gives

•Taking /z, 

•The final equation as the wave equation for EM waves in a conductor is found to 
be
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Electromagnetic wave in a conductor
•Recall the wave equation of EM plane polarized wave in a conductor,

•A solution of the wave equation is found to be

•Where 
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Solution of the wave equation with 
diffusion effect

•Recall, the wave equation in a conductor,

•With the assumption that its time-variation is simple harmonic, 

•Substitute the assumed solution into the wave equation,
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• Solution of the above 2nd order differential equation is given as

z z
xE Ae Be  

• Since the wave propagates in +z direction the second term of the 

solution is chosen.

• The final solution for the  time dependent wave equation in a 

conductor can be written as
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•The ratio of the current density terms can be written as

•For a conductor, where                            , then 

•This can be written as 

•The wave function becomes  
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Skin depth
•The skin depth is the travelling distance of EM wave in the conductor when the 
electric field vector has decayed to a value of Ex = E0e

-1.
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Example of skin depth for metals
•Note that as the frequency of 
the EM wave increases, the 
penetration depth decreases.

•This means the EM wave 
hardly penetrates into the 
conducting material.
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• Recall the wave function in a conductor

• The phase velocity of the wave  is given by

• Since the phase velocity is a function of the frequency, an electrical conductor is 

dispersive medium to EM waves.

• Because v/ is negative so that the conductor is anomalously dispersive and the 

group velocity is greater than the phase velocity.

Electromagnetic wave velocity in a conductor and 

anomalous dispersion

 ; 2c 
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• High frequency EM waves propagate only a very small distance in conductor.

• When  is small, the phase velocity v is small, and the refractive index c/v of 

a conductor can be very large. This results in the high optical reflectivity.

Determine the distance in which the amplitude of the striking EM 

wave drops to about 1% of its surface value.



When is a medium a conductor or a 
dielectric?
•The ratio of the current density is used to determine whether the medium is a 
conductor or a dielectric.

•The conduction current dominates and the medium is a conductor :

•The displacement current dominates and the material behaves as a dielectric :
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Impedance of a conduction medium to 
EM waves
•Recall the electric field in a conductor

•The corresponding magnetic filed in the conductor is given as

•Given that 

•The impedance of the conductor is given as   

•By using time-dependent Maxwell’s equation 
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The magnitude of ZC
•Recall the impedance of a conducting  medium,

•The magnitude can be written in terms of the free space impedance as follows,
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Reflection and transmission of EM waves 
at a boundary : Normal incidence

The boundary conditions, from EM theory, are that the components of the field vectors E 
and H tangential or parallel to the boundary are continuous across the boundary.
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Reflection  and transmission 
coefficients : normal incidence

•What happens to the travelling wave normally 
striking a perfect conductor in terms of reflection 
and transmission coefficients?
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Oblique incidence and Fresnel’s 
Equations for dielectrics

•The same boundary 
conditions are still 
applied.

•Two cases have to be 
investigated : 

(1) H perpendicular to the 
plane of incidence and

(2) E perpendicular to the 
plane of incidence
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Reflection and transmission 
coefficients : oblique incidence
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Reflection and transmission coefficients in 
terms of refractive index n
•Since

•The reflection and transmission coefficients can be expressed in terms of 
refractive indices of incident (n1) and transmitted (n2)media. 
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Fresnel’s equations

What are the reflection coefficients at the normal incidence in terms of refractive 
indices?
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Brewster angle or 

polarizing angle B can be 

found from
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External and internal reflections at air-glass interface
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A stack of plates at Brewster's angle to a beam reflects off 

a fraction of the s-polarized light at each surface, leaving 

a p-polarized beam. Full polarization at Brewster's angle 

requires many more plates than shown. The arrows 

indicate the direction of the electrical field, not the 

magnetic field, which is perpendicular to the electric 

field.

https://commons.wikimedia.org/wiki/File:Brewster-polarizer.svg

https://www.tau.ac.il/~phchlab/experiments_new/SemB04_Sucrose/02TheoreticalBackground.html
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Application of Brewster angle

S or P linear 

state of the 

output laser 

beam?
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Reflection from a conductor 
(Normal incidence)

•The refractive index of a conduction medium is given as

•where 

•The ratio Er/Ei is therefore complex and the value of reflected intensity Ir is found from    
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Example  metal reflected intensity at IR

For copper  = 6 x 107 (ohm m-1) and (20/)1/2  0.01 at infer-red 
frequencies. Determine the metal reflected intensity at the IR range.
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